Search This Blog

Saturday, June 30, 2018

Tugas Softskill 4

A.Komputasi Pararel

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.

Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Tidak berarti dengan mesin paralel semua program yang dijalankan diatasnya otomatis akan diolah secara parallel.

Contoh : Komputer SISD

 

B.Parallelism Consept

Ada dua bentuk umum paralelisme: paralelisme instruksi-level dan paralelisme prosesor-level. Pada bentuk pertama, paralelisme dimanfaatkan dalam instruksi-instriuksi individu agar dapat mngeksekusi lebih banyak instruksi per detikdari mesin tersebut. Pada betuk kedua, berbagai macam CPU bersama-sama menangani masalah yang sama. Setiap pendekatan memiliki keunggulannya masing-masing.
Contoh : Multikomputer dan Multiprosessor

 

C. Distributed Processing

Adalah kemampuan menjalankan semua proses pengolahan data secara bersama antara komputer yang berfungsi sebagai pusat dengan beberapa komputer yang lebih kecil dan saling dihubungkan melalui jalur komunikasi. Setiap komputer tersebut memiliki prosesor mandiri sehingga mampu mengolah sebagian data secara terpisah, kemudian hasil pengolahan tadi digabungkan menjadi satu penyelesaian total. Jika salah satu prosesor mengalami kegagalan atau masalah maka prosesor yang lain akan mengambil alih tugasnya. Dalam proses distribusi sudah mutlak diperlukan perpaduan yang mendalam antara teknologi komputer dan telekomunikasi, karena selain proses yang harus didistribusikan, semua host komputer wajib melayani terminal-terminalnya dalam satu perintah dari komputer pusat

Contoh : Jaringan Client server

 

D.Architectur Parallel Computer

Arsitektur Komputer Paralel Beserta Jenis Arsitekturnya

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan. Biasanya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak. Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi.

Contoh : Taksonomi Flyn yaitu SISD,SIMD,MISD,MIMD

 

E.Pengantar Thread Programming

Threading / Thread adalah sebuah alur kontrol dari sebuah proses. Konsep threading adalah menjalankan 2 proses ( proses yang sama atau proses yang berbeda ) dalam satu waktu. Contohnya sebuah web browser mempunyai thread untuk menampilkan gambar atau tulisan sedangkan thread yang lain berfungsi sebagai penerima data dari network. Threading dibagi menjadi 2 :

1.Static Threading

Teknik ini biasa digunakan untuk komputer dengan chip multiprocessors dan jenis komputer shared-memory lainnya. Teknik ini memungkinkan thread berbagi memori yang tersedia, menggunakan program counter dan mengeksekusi program secara independen. Sistem operasi menempatkan satu thread pada prosesor dan menukarnya dengan thread lain yang hendak menggunakan prosesor itu.

2.Dynamic Multithreading

Teknik ini merupakan pengembangan dari teknik sebelumnya yang bertujuan untuk kemudahan karena dengannya programmer tidak harus pusing dengan protokol komunikasi, load balancing, dan kerumitan lain yang ada pada static threading. Concurrency platform ini menyediakan scheduler yang melakukan load balacing secara otomatis. Walaupun platformnya masih dalam pengembangan namun secara umum mendukung dua fitur : nested parallelism dan parallel loops.

Contoh : Java

 

F. Pengantar Massage Passing dan OpenMP

Message Passing merupakan sebuah bentuk dari komunikasi yang digunakan di komputasi paralel, OOT (Object Oriented Programming) atau Pemrograman Berbasis Objek dan komunikasi interproses. Massage Passing merupkan suatu teknik bagaimana mengatur suatu alur komunikasi messaging terhadap proses pada system. Message passing dalam ilmu komputer adalah suatu bentuk komunikasi yang digunakan dalam komputasi paralel , pemrograman-berorientasi objek , dan komunikasi interprocess. Objek didistribusikan dan metode sistem remote doa seperti ONC RPC , CORBA , Java RMI , DCOM , SOAP , . NET Remoting , CTO , QNX Neutrino RTOS , OpenBinder , D-Bus , Unison RTOS dan serupa pesan lewat sistem.

Paradigma Message passing yaitu :

1. Banyak contoh dari paradigma sekuensial dipertimbangkan bersama-sama.

2. Programmer membayangkan beberapa prosesor, masing-masing dengan memori, dan menulis sebuah program untuk berjalan pada setiap prosesor.

3. Proses berkomunikasi dengan mengirimkan pesan satu sama lain

MPI adalah sebuah standard pemrograman yang memungkinkan pemrogram untuk membuatsebuah aplikasi yang dapat dijalankan secara paralel. Proses yang dijalankan oleh sebuah aplikasi dapat dibagi untuk dikirimkan ke masingmasing compute node yang kemudian masingmasing compute node tersebut mengolah dan mengembalikan hasilnya ke komputer head node.Untuk merancang aplikasi paralel tentu membutuhkan banyak pertimbangan - pertimbangandiantaranya adalah latensi dari jaringan dan lama sebuah tugas dieksekusi oleh prosesor.

OpenMP merupakan API yang mendukung multi-platform berbagi memori multiprocessing pemrograman C , C + + , dan Fortran , pada kebanyakan arsitektur prosesor dan system operasi , termasuk Solaris , AIX , HP-UX , GNU / Linux , Mac OS X , dan Windows platform. Ini terdiri dari satu set perintah kompiler, rutinitas library, dan variable lingkungan yang mempengaruhi perilaku run-time. OpenMP dikelola oleh nirlaba teknologi konsorsium OpenMP Arsitektur Review Board (ARB atau OpenMP), bersama-sama didefinisikan oleh sekelompok perangkat keras komputer utama dan vendor perangkat lunak, termasuk AMD , IBM , Intel , Cray , HP , Fujitsu , Nvidia , NEC , Microsoft , Texas Instruments , Oracle Corporation , dan banyak lagi.

Contoh : C++ , C , dan Fotran.

 

G. PEMROGRAMAN CUDA GPU

Graphics Processing Unit merupakan prosesor yang didedikasikan untuk render cepat dalam pemrosesan polygon baik itu texturing dan shading. Terdiri atas banyak core namun masih menggunakan arsitektur yang sederhana, sehingga harganya relative murah dan di produksi secara missal untuk berbagai keperluan misalnya peneilitian/ilmuah.

CUDA, Compute Unified Device Architecture merupakan suatu framework dari bahasa pemrograman yang mendukung bahas C language, dimana mampu berkomunikasi langsung dengan GPU dan sangat mudah bekerjasama untuk segala multi-threading  parallel execution hampir diseluruh prosesor pada GPU. CUDA menggukan konsep nvcc sebagai ORM dalam object programmingnya. CUDA merupakan produk dari NVIDIA sebagai produsen graphic komputer ternama.

Bukan hanya aplikasi seperti teknologi ilmu pengetahuan yang spesifik. CUDA sekarang bisa dimanfaatkan untuk aplikasi multimedia. Misalnya meng-edit film dan melakukan filter gambar. Sebagai contoh dengan aplikasi multimedia, sudah mengunakan teknologi CUDA. Software TMPGenc 4.0 misalnya membuat aplikasi editing dengan mengambil sebagian proces dari GPU dan CPU. VGA yang dapat memanfaatkan CUDA hanya versi 8000 atau lebih tinggi.

Contoh : Visual Studio

 

Sumber:

1. http://akhmadilman46.blogspot.com/2013/05/komputasi-paralel.html
2.
http://zulfadli-0635.blogspot.com/2009/01/proses-paralel-dalam-sistim-komputer.html
3.
http://arifbudimanhsb.blogspot.com/2016/06/distributed-processing-adalah.html
4.
https://pandanwulan.wordpress.com/2015/06/28/konsep-distribusi-processing-arsitektur-komputer-paralel-thread-programming-message-passing-atau-openmp-dan-pemrograman-cuda-pada-gpu/
5.
http://maladawatunnajah.blogspot.com/2015/11/pengantar-thread-programming.html
6.
https://muhammad-ridho94.blogspot.com/2016/06/message-passing-dan-openmp.html
7.
https://syifaadeka.wordpress.com/2016/06/18/pemrograman-cuda-gpu/

Sunday, April 22, 2018

Tugas Softskill 3

Quantum Computation
ð  Alat hitung yang menggunakan sebuah fenomena mekanika kuantum, misalnya superposisi dan keterkaitan, untuk melakukan operasi data. Dalam komputasi klasik, jumlah data dihitung dengan bit; dalam komputer kuantum, hal ini dilakukan dengan qubit. Prinsip dasar komputer kuantum adalah bahwa sifat kuantum dari partikel dapat digunakan untuk mewakili data dan struktur data, dan bahwa mekanika kuantum dapat digunakan untuk melakukan operasi dengan data ini. Dalam hal ini untuk mengembangkan komputer dengan sistem kuantum diperlukan suatu logika baru yang sesuai dengan prinsip kuantum.

Entanglement
ð  Fenomena fisik yang terjadi ketika pasangan atau kelompok partikel dihasilkan atau berinteraksi dengan cara sedemikian rupa sehingga status kuantum setiap partikel tidak dapat dijelaskan secara independen dari keadaan yang lain, bahkan ketika partikel dipisahkan oleh jarak besar sebagai gantinya. Keadaan kuantum harus dijelaskan untuk sistem secara keseluruhan.

Pengoprasian Data Qubit
ð  Sebuah qubit adalah unit dasar informasi dalam sebuah komputer kuantum. Sementara sedikit dapat mewakili hanya satu dari dua kemungkinan seperti 0 / 1, ya / tidak, qubit dapat mewakili lebih: 0 / 1, 1 dan 0, probabilitas terjadinya setiap saat dikombinasikan dengan qubit lebih, dan semua yang secara bersamaan. Secara umum komputer kuantum dengan qubit n bisa dalam superposisi sewenang-wenang hingga 2 n negara bagian yang berbeda secara bersamaan (ini dibandingkan dengan komputer normal yang hanya dapat di salah satu negara n 2 pada satu waktu).

Untuk memanipulasi sebuah qubit, maka menggunakan Quantum Gates (Gerbang Kuantum). Cara kerjanya yaitu sebuah gerbang kuantum bekerja mirip dengan gerbang logika klasik. Gerbang logika klasik mengambil bit sebagai input, mengevaluasi dan memproses input dan menghasilkan bit baru sebagai output.

Quantum Gates
ð  Quantum Gates / Gerbang Quantum merupakan sebuah aturan logika / gerbang logika yang berlaku pada quantum computing. Prinsip kerja dari quantum gates hampir sama dengan gerbang logika pada komputer digital. Jika pada komputer digital terdapat beberapa operasi logika seperti AND, OR, NOT, pada quantum computing gerbang quantum terdiri dari beberapa bilangan qubits, sehingga quantum gates lebih susah untuk dihitung daripada gerang logika pada komputer digital.

Alogaritma Shor
ð  Algoritma yang ditemukan oleh Peter Shor pada tahun 1995. Dengan menggunakan algoritma ini, sebuah komputer kuantum dapat memecahkan sebuah kode rahasia yang saat ini secara umum digunakan untuk mengamankan pengiriman data. Kode yang disebut kode RSA ini, jika disandikan melalui kode RSA, data yang dikirimkan akan aman karena kode RSA tidak dapat dipecahkan dalam waktu yang singkat. Selain itu, pemecahan kode RSA membutuhkan kerja ribuan komputer secara paralel sehingga kerja pemecahan ini tidaklah efektif.

Algoritma Shor bergantung pada hasil dari teori bilangan. Hasil ini adalah: fungsi periodik. Dalam konteks algoritma Shor, n akan menjadi bilangan yang akan difaktorkan. Jika dua bilangan tersebut adalah coprime itu berarti bahwa pembagi umumnya adalah 1. Perhitungan fungsi ini untuk jumlah eksponensial, dari itu akan mengambil waktu eksponensial pada komputer klasik. Algoritma Shor memanfaatkan paralelisme kuantum untuk melakukan jumlah eksponensial operasi dalam satu langkah.


Sumber:

Saturday, March 31, 2018

Tugas Softskill 2

Cloud Computing
Komputasi awan adalah gabungan pemanfaatan teknologi komputer ('komputasi') dan pengembangan berbasis Internet ('awan'). Awan (cloud) adalah metafora dari internet, sebagaimana awan yang sering digambarkan di diagram jaringan komputer. Sebagaimana awan dalam diagram jaringan komputer tersebut, awan (cloud) dalam Cloud Computing juga merupakan abstraksi dari infrastruktur kompleks yang disembunyikannya. Ia adalah suatu metoda komputasi di mana kapabilitas terkait teknologi informasi disajikan sebagai suatu layanan (as a service), sehingga pengguna dapat mengaksesnya lewat Internet ("di dalam awan") tanpa mengetahui apa yang ada didalamnya, ahli dengannya, atau memiliki kendali terhadap infrastruktur teknologi yang membantunya. Menurut sebuah makalah tahun 2008 yang dipublikasi IEEE Internet Computing "Cloud Computing adalah suatu paradigma di mana informasi secara permanen tersimpan di server di internet dan tersimpan secara sementara di komputer pengguna (client) termasuk di dalamnya adalah desktop, komputer tablet, notebook, komputer tembok, handheld, sensor-sensor, monitor dan lain-lain."

Komputasi awan adalah suatu konsep umum yang mencakup SaaS, Web 2.0, dan tren teknologi terbaru lain yang dikenal luas, dengan tema umum berupa ketergantungan terhadap Internet untuk memberikan kebutuhan komputasi pengguna. Sebagai contoh, Google Apps menyediakan aplikasi bisnis umum secara daring yang diakses melalui suatu penjelajah web dengan perangkat lunak dan data yang tersimpan di server. Komputasi awan saat ini merupakan trend teknologi terbaru, dan contoh bentuk pengembangan dari teknologi Cloud Computing ini adalah iCloud.

Contoh Cloud Computing
Lewat penggunaan email seperti Yahoo ataupun Gmail. Data di beberapa server diintegrasikan secara global tanpa harus mendownload software untuk menggunakannya. Pengguna hanya memerlukan koneksi internet dan semua data dikelola langsung oleh Yahoo dan juga Google. Software dan juga memori atas data pengguna tidak berada di komputer tetapi terintegrasi secara langsung melalui sistem Cloud menggunakan komputer yang terhubung ke internet.


Grid Computing
Komputasi grid adalah penggunaan sumber daya yang melibatkan banyak komputer yang terdistribusi dan terpisah secara geografis untuk memecahkan persoalan komputasi dalam skala besar.
Menurut tulisan singkat oleh Ian Foster ada check-list yang dapat digunakan untuk mengidentifikasi bahwa suatu sistem melakukan komputasi grid yaitu :
-          Sistem tersebut melakukan koordinasi terhadap sumberdaya komputasi yang tidak berada dibawah suatu kendali terpusat. Seandainya sumber daya yang digunakan berada dalam satu cakupan domain administratif, maka komputasi tersebut belum dapat dikatakan komputasi grid.
-          Sistem tersebut menggunakan standard dan protokol yang bersifat terbuka (tidak terpaut pada suatu implementasi atau produk tertentu). Komputasi grid disusun dari kesepakatan-kesepakatan terhadap masalah yang fundamental, dibutuhkan untuk mewujudkan komputasi bersama dalam skala besar. Kesepakatan dan standar yang dibutuhkan adalah dalam bidang autentikasi, otorisasi, pencarian sumberdaya, dan akses terhadap sumber daya.
-          Sistem tersebut berusaha untuk mencapai kualitas layanan yang canggih, (nontrivial quality of service) yang jauh diatas kualitas layanan komponen individu dari komputasi grid tersebut.

Contoh grid computing
-          Medical Images: Penggunaan data grid dan komputasi grid untuk menyimpan medical-image. Contohnya adalah eDiaMoND project.
-     Computer-Aided Drug Discovery (CADD): Komputasi grid digunakan untuk membantu penemuan obat. Salah satu contohnya adalah: Molecular Modeling Laboratory (MML) di University of North Carolina (UNC).
-          Big Science: Data grid dan komputasi grid digunakan untuk membantu proyek laboratorium yang disponsori oleh pemerintah. Contohnya terdapat di DEISA
-          e-Learning: Komputasi grid membantu membangun infrastruktur untuk memenuhi kebutuhan dalam pertukaran informasi dibidang pendidikan. Contohnya adalah AccessGrid


Virtualisasi
Virtualisasi adalah istilah umum yang mengacu kepada abstraksi dari sumber daya komputer. Definisi lainnya adalah "sebuah teknik untuk menyembunyikan karakteristik fisik dari sumber daya komputer dari bagaimana cara sistem lain, aplikasi atau pengguna berinteraksi dengan sumber daya tersebut. Hal ini termasuk membuat sebuah sumber daya tunggal (seperti server, sebuah sistem operasi, sebuah aplikasi, atau peralatan penyimpanan terlihat berfungsi sebagai beberapa sumber daya logikal; atau dapat juga termasuk definisi untuk membuat beberapa sumber daya fisik (seperti beberapa peralatan penyimpanan atau server) terlihat sebagai satu sumber daya logikal."
Istilah virtualisasi sudah digunakan secara luas sejak 1960-an, dan telah diaplikasikan kepada beberapa aspek computer dari keseluruhan sistem komputer sampai sebuah kemampuan atau komponen individu. Secara umum semua teknologi virtualisasi mengacu kepada "menyembunyikan detail teknis" melalui enkapsulasi.

Contoh virtualisasi
Microsoft Hyper-V atau yang sebelumnya bernama Windows Server Virtualization merupakan virtualisasi yang bersifat hypervisor-based untuk sistem x64. Versi beta dari Hyper-V dipasarkan dengan edisi Windows Server 2008, dan versi finalnya dirilis tanggal 26 Juni 2008. Microsoft menyatakan bahwa produk ini merupakan suatu usaha dari Microsoft untuk menyediakan sebuah sistem operasi terbaik yang mendukung teknologi virtualisasi.


Distributed Computation dalam Cloud Computing
Kegiatan ini merupakan kumpulan beberapa computer yang terhubung untuk melakukan pendistribusian, seperti mengirim dan menerima data serta melakukan interaksi lain antar computer yang dimana membutuhkan sebuah jaringan agar computer satu dan lainnya bisa saling berhubung dan melakukan interaksi. Hal ini semua dilakukan dengan cloud computing yang seperti kita ketahui memberikan layanan dimana informasinya disimpan di server secara permanen dan disimpan di computer client secara temporary.

Komputasi Terdistribusi merupakan salah satu tujuan dari Cloud Computing, karena menawarkan pengaksesan sumber daya secara parallel, para pengguna juga bisa memanfaatkannya secara bersamaan (tidak harus menunggu dalam antrian untuk mendapatkan pelayanan), terdiri dari banyak sistem sehingga jika salah satu sistem crash, sistem lain tidak akan terpengaruh, dapat menghemat biaya operasional karena tidak membutuhkan sumber daya (resourches).
Distribusi komputasi ini memiliki definisi mempelajari penggunaan terkoordinasi dari computer secara fisik terpisah atau terdistribusi. Pada distributed computing ini, program dipisah menjadi beberapa bagian yang dijalankan secara bersamaan pada banyak computer yang terhubung melalui jaringan internet.

Contoh distributed computation dalam cloud computing
E mail service, facebook, google


MapReduce dan NoSql

MapReduce
Setiap istilah perlu definisi, dan harus ada kesepakatan akan definisi tersebut biar tidak terjadi salah pengertian ataupun salah paham diantara para pengguna istilah tersebut. MapReduce pun punya definisi. MapReduce adalah model pemrograman rilisan Google yang ditujukan untuk memproses data berukuran raksasa secara terdistribusi dan paralel dalam cluster yang terdiri atas ribuan komputer. Dalam memproses data, secara garis besar MapReduce dapat dibagi dalam dua proses yaitu proses Map dan proses Reduce. Kedua jenis proses ini didistribusikan atau dibagi-bagikan ke setiap komputer dalam suatu cluster (kelompok komputer yang salih terhubung) dan berjalan secara paralel tanpa saling bergantung satu dengan yang lainnya. Proses Map bertugas untuk mengumpulkan informasi dari potongan-potongan data yang terdistribusi dalam tiap komputer dalam cluster. Hasilnya diserahkan kepada proses Reduce untuk diproses lebih lanjut. Hasil proses Reduce merupakan hasil akhir yang dikirim ke pengguna.

Contoh mapreduce
Contoh kasus map reduce adalah misalnya jika kita ingin menghitung jumlah penggunaan huruf dalam sebuah buku. Misal kita punya satu file teks besar yang berisi seluruh kalimat yang menyusun sebuah buku. Maka yang dilakukan oleh Map Reduce program yang menghitung penggunaan kata dalam buku tersebut kurang lebih sebagai berikut:
Proses Map:
-          Membaca tiap baris kalimat di dalam file teks tersebut.
-          Membaca tiap kata yang ada dalam beris tersebut dan membuat sebuah map untuk kata tersebut. Key dari map itu adalah kata tersebut sedangkan value dari map itu adalah 1.
-          Sampai disini hasil yang kita dapatkan dari dua langkah diatas adalah daftar map untuk semua kata dari file teks tersebut dengan value 1. Karena kita tidak menyatukan perhitungan kata-kata yang sama dalam satu map, maka tersapat map dengan key yang sama. Misal ada map kata ‘Dan’ => 1 berulang kali.
Proses Reduce:
-          Melakukan sorting atau pengelompokan map dengan kata-kata yang sama.
-          Menjumlahkan untuk mencari total dari kata-kata yang sama tersebut.
-          Sampai disini maka hasilnya adalah map dengan key yang unik setiap kata berikut dengan jumlah penggunaannya di buku tersebut.

NoSql
NoSQL adalah istilah yang dikenal dalam teknologi komputasi untuk merujuk kepada kelas yang luas dari sistem manajemen basis data yang di identifikasikan dengan tidak mematuhi aturan pada model sistem manajemen basis data relasional yang banyak digunakan.
NoSQL tidak dibangun terutama dengan table dan umumnya tidak menggunakan SQL untuk memanipulasi data, sehingga sering ditafsirkan sebagai “tidak hanya SQL”.

Contoh NoSql
Neo4J dan FlockDB


No Sql Database
Database NoSQL adalah database yang tidak menggunakan realasi antar tabel dan tidak menyimpan data dalam format tabel kaku (kolom yang fix) seperti layaknya Relasional Database. Document Database contohnya MongoDB, seiap satu object data disimpan dalam satu dokumen.

Contoh No Sql Database

Neo4J dan FlockDB


Source: